<code id='FE5CA68B2F'></code><style id='FE5CA68B2F'></style>
    • <acronym id='FE5CA68B2F'></acronym>
      <center id='FE5CA68B2F'><center id='FE5CA68B2F'><tfoot id='FE5CA68B2F'></tfoot></center><abbr id='FE5CA68B2F'><dir id='FE5CA68B2F'><tfoot id='FE5CA68B2F'></tfoot><noframes id='FE5CA68B2F'>

    • <optgroup id='FE5CA68B2F'><strike id='FE5CA68B2F'><sup id='FE5CA68B2F'></sup></strike><code id='FE5CA68B2F'></code></optgroup>
        1. <b id='FE5CA68B2F'><label id='FE5CA68B2F'><select id='FE5CA68B2F'><dt id='FE5CA68B2F'><span id='FE5CA68B2F'></span></dt></select></label></b><u id='FE5CA68B2F'></u>
          <i id='FE5CA68B2F'><strike id='FE5CA68B2F'><tt id='FE5CA68B2F'><pre id='FE5CA68B2F'></pre></tt></strike></i>

          新闻中心

          现象量子超薄材料可以设计释放

          • 分类:综合
          • 来源:艺海云舟
          • 发布时间:2025-06-19 22:51:55
          • 访问量:93

          【概要描述】摘要:在《自然》杂志上,一组物理学家发表论文指出,设计出了一种新的超薄材料,用于制造难以捉摸的量子态。这些量子态被称为“一维马约拉纳零能量模式”,可对量子计算产生巨大影响。... 在《

          现象量子超薄材料可以设计释放

          【概要描述】摘要:在《自然》杂志上,一组物理学家发表论文指出,设计出了一种新的超薄材料,用于制造难以捉摸的量子态。这些量子态被称为“一维马约拉纳零能量模式”,可对量子计算产生巨大影响。... 在《

          • 分类:综合
          • 来源:艺海云舟
          • 发布时间:2025-06-19 22:51:55
          • 访问量:97722
          详情
          摘要:在《自然》杂志上,超薄材料一组物理学家发表论文指出,设计设计出了一种新的可释超薄材料,用于制造难以捉摸的放量量子态。这些量子态被称为“一维马约拉纳零能量模式”,现象可对量子计算产生巨大影响。超薄材料...

          在《自然》杂志上,设计一组物理学家发表了一篇论文,可释指出一种新的放量超薄材料被设计用来制造难以捉摸的量子态。这些量子态被称为“一维majorana零能模”,现象对量子计算有很大影响。超薄材料kwE

          量子计算机的设计核心是量子比特,用于高速计算。可释量子比特对计算机周围的放量噪声和干扰非常敏感,这会在计算中引入误差。现象一种新型的量子比特,称为拓扑量子比特,可以解决这个问题,而一维majorana零能模可能是制造这种拓扑量子比特的关键。kwE

          什么是“一维马约拉纳零能量模式”?kwE

          一维majorana零能量模式,缩写为MZM,是一组以特定方式组合的电子,因此它们的行为就像一种叫做Mayorana Fermi的粒子,这是粒子物理学家majorana在20世纪30年代首次提出的。如果majorana的理论粒子结合在一起,它们将充当拓扑量子位。问题是,无论是在实验室还是在天文学中,都没有发现它们存在的证据。研究人员没有试图创造一种在宇宙中从未见过的粒子,而是试图让规则的电子表现得像它们一样。kwE

          为了制造MZM,研究人员需要非常非常小的材料。MZM是通过向一组电子提供特定数量的能量,然后将它们捕获在一起,使它们无法逃逸而形成的。因此,材料必须是二维的,并且在物理上尽可能薄。为了创造一维MZM,该团队需要制造一种全新的2D材料:拓扑超导体。如图所示,一维majorana零能模位于二维拓扑超导体的边缘。kwE

          拓扑超导性是发生在电绝缘体和超导体之间边界的一种特性。为了创建一维MZM,研究团队需要能够在拓扑超导体中一起捕获电子,但这并不像将磁铁吸引到任何超导体那样简单。kwE

          研究人员解释说:“如果大部分磁铁放在超导体上,就会阻止它们变成超导体。”“材料之间的相互作用会破坏它们的性能,但是要制作MZM,您需要使材料稍微相互作用。诀窍是使用二维材料:它们之间的相互作用足以形成您需要的MZM特征。”kwE

          问题是旋转的本质。在磁性材料中,自旋都在同一个方向上排列,而在超导体中,自旋在相反的方向上交替排列。将磁铁和超导体放在一起通常会破坏自旋的排列和错位。然而,在二维层状材料中,材料之间的相互作用足以“倾斜”原子的自旋,并使它们产生制造MZM所需的特定自旋状态,这被称为拉什巴自旋轨道耦合。kwE

          查找——维马约拉纳零能量模式kwE

          研究中的拓扑超导体由一层溴化铬构成,只有一个原子厚时才有磁性。研究团队在硒化铌超导晶体上生长了原子厚度的溴化铬岛,并用扫描隧道显微镜测量了它的电学性质。kwE

          福斯特教授说:“需要大量的模拟工作来证明我们看到的信号是由MZM引起的,而不是其他影响。”“我们需要证明所有零件都是组装好的,以证明我们生产了MZM。”现在,该团队已经确定他们可以用二维材料制造一维MZM,下一步是尝试将它们制造成拓扑量子位。kwE

          Liljeroth教授说:“这项研究最酷的部分是我们用二维材料制作了MZM。原则上,它们更容易制造,更容易定制性能,最终成为非常有用的设备。”kwE

          梦幻模拟战手游第四战域70级光辉阵容通关技巧与实战打法详解
          元气骑士游侠角色强度全面解析与实战技巧深度评测
          幻塔马克抽取价值全解析角色强度与实战表现深度评测
          原神11月11日11版本更新需重新下载吗 客户端更新步骤详细说明

          艺海云舟

          联系电话:020-84773902
          邮箱地址:customer@hrtwrk.com 
          网站地址:
          http://dkiwpw.impactiveimprints.com/
          公司地址:

          底部导航

          网站首页                                 公司介绍
          新闻中心                                 投资运营
          党群建设                                 联系我们

          版权所有:艺海云舟 粤ICP备77645321号